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1. Introduction

Pain in the oral and craniofacial system represents a major med-
ical and social problem. Indeed, a U.S. Surgeon General’s report on
orofacial health concludes that, ‘‘. . .oral health means much more
than healthy teeth. It means being free of chronic oral-facial pain
conditions. . .’’ [172]. Community-based surveys indicate that many
subjects commonly report pain in the orofacial region, with esti-
mates of >39 million, or 22% of Americans older than 18 years of
age, in the United States alone [108]. Other population-based sur-
veys conducted in the United Kingdom [111,112], Germany [91],
or regional pain care centers in the United States [54] report similar
occurrence rates [135]. Importantly, chronic widespread body pain,
patient sex and age, and psychosocial factors appear to serve as risk
factors for chronic orofacial pain [1,2,92,99,138]. In addition to its
high degree of prevalence, the reported intensities of various orofa-
cial pain conditions are similar to that observed with many spinal
paindisorders (Fig. 1).Moreover, orofacial pain isderived frommany
unique target tissues, such as themeninges, cornea, tooth pulp, oral/
nasal mucosa, and temporomandibular joint (Fig. 2), and thus has
several unique physiologic characteristics comparedwith the spinal
nociceptive system[23].Given theseconsiderations, it is not surpris-
ing that accurate diagnosis and effective management of orofacial
pain conditions represents a significant health care problem.

Publications in the field of orofacial pain demonstrate a steady
increase over the last several decades (Fig. 3). This is a complex lit-
erature; a recent bibliometric analysis of orofacial pain articles
published in 2004–2005 indicated that 975 articles on orofacial
pain were published in 275 journals from authors representing
54 countries [142]. Thus, orofacial pain disorders represent a com-
plex constellation of conditions with an equally diverse literature
base. Accordingly, this review will focus on a summary of major re-
search foci on orofacial pain without attempting to provide a com-
prehensive review of the entire literature.

2. Physiologic studies on trigeminal pain

Several reviews are available that document the historical
development of physiologic research on the trigeminal nociceptive

system [33,53,114,120,149]. More recent studies have character-
ized differences in electrophysiological [82], anatomical [10], or
pharmacological [42,80] properties of trigeminal afferents inner-
vating distinct target tissues. Collectively, many of these studies
provide support for the hypothesis that target tissue interactions
with trigeminal neuron terminals, via either soluble factors such
as neurotrophins [48], or by integrin binding to extracellular ma-
trix molecules [22,25], regulate the expression or trafficking of
neuronal proteins, including ion channels and receptors [90,139]
or second messenger signaling pathways [25]. Thus, the presence
of unique target tissues innervated by trigeminal afferent fibers
likely contributes to differences in the responsiveness of these neu-
rons. A recent review characterizes differences between the tri-
geminal and spinal afferent systems under basal conditions [23].
Table 1 illustrates differences between the trigeminal and spinal
systems after various forms of injury. Collectively, these studies
indicate that the trigeminal system has many unique features that
may contribute to distinct response patterns to tissue injury.

The hypothesis of peripheral regulation of neuronal phenotype
has been expanded by the recognition that estradiol selectively al-
ters gene transcription in trigeminal neurons with increased
expression of neuropeptides, such as prolactin, that are capable
of sensitizing neuronal responses to capsaicin or noxious heat
[49]. Additional studies have demonstrated that trigeminal pepti-
dergic neurons undergo morphological changes (‘‘sprouting’’) in
response to injury-induced inflammation in target tissues [33]. In
contrast, there is a lack of sympathetic fiber sprouting in trigeminal
ganglion cells, unlike the well-recognized occurrence in the spinal
system [19,29,63]. Thus, an emerging body of evidence reveals the
dynamic and specific responsiveness of the trigeminal system to
either injury of its various target tissues or to the presence of cer-
tain gonadal steroids.

Other studies have employed cultured trigeminal ganglia (TG) to
evaluate cellular mechanisms of neuronal activation. For example,
cannabinoids activate a calcineurin pathway leading to the rapid
dephosphorylation and desensitization of transient receptor poten-
tial cation channel, subfamily V, member 1 (TRPV1), thereby con-
tributing to an ionotropic mechanism for peripheral cannabinoid
antinociception [4,5,89,133]. Moreover, accumulating evidence
indicates a functional cross-desensitization between TRPV1 and
TRP subfamily A,member 1 (TRPA1) on trigeminal neurons, possibly
via formation of a heteromer [4,6,146,147]. Additional studies
have used cultured TG to demonstrate that opioid receptors are
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expressed on sensory neurons but are not coupled to inhibitory sig-
naling pathways under basal experimental conditions. Instead, pre-
treatment with arachidonic acid or with agonists to receptors
coupled to Gaq signaling pathways (eg, bradykinin, trypsin) is re-
quired to induce the rapid development of a functional competence
for opioid receptor signaling to Gai pathways leading to inhibition
of neuronal activities [24,25,60,131,132]. These cellular findings
are consistent with the observation that opioids have little efficacy
for peripheral antinociception under basal conditions, but rapidly
gain functional competence following injection of inflammatory
mediators [145] or the development of inflammation.

Recent studies have employed cultured trigeminal neurons to
identify endogenous TRPV1 agonists [130,134]. Heating of isolated
superfused peripheral tissue to a noxious temperature range leads
to the release of oxidized linoleic acid metabolites (OLAMs),
including 9- and 13-hydroxyoctadecadienoic acid (HODE). The
administration of synthetic 9- and 13-HODE (and their oxoODE
metabolites) selectively activates TRPV1, leading to inward cur-
rents, increased accumulation of intracellular calcium, and trigger-
ing exocytosis of neuropeptides from TG neurons and thermal
allodynia. These effects are blocked by TRPV1 antagonists and are

observed only in trigeminal neurons from wild-type mice but not
TRPV1 knockouts [130]. Moreover, the intracellular delivery of
compounds that block OLAM formation (eg, nordihydroguaiaretic
acid) or a combination of anti-9- and anti-13-HODE antibodies
both significantly inhibit heat-evoked activation of trigeminal neu-
rons. Collectively, these findings strongly implicate the OLAMs as a
family of endogenous TRPV1 agonists. Interestingly, the pro-
nounced effect of TRPV1 antagonists for blocking heat hyperalgesia
in inflammation as well as mechanical allodynia (after intrathecal
administration) has led to the hypothesis that an endogenous
TRPV1 systemmight be activated under conditions of tissue injury.
In support of this hypothesis, the administration of anti-OLAM
antibodies produces a peripherally mediated thermal antinocicep-
tion and a centrally mediated blockade of mechanical allodynia in
the complete Freund’s model of inflammation [130,134]. Thus, the
OLAM system appears to contribute to acute heat detection by
TRPV1 and to regulate more persistent conditions such as inflam-
matory pain.

Future research directions may include preclinical studies
focusing on mechanisms underlying differences between trigemi-
nal and spinal pain conditions, mechanisms of sex-dependent dif-
ferences in pain transduction and processing, and on the biological
basis and pharmacological regulation of acute and chronic orofa-
cial pain conditions. Many of these studies would be promoted
by the development of standardized preclinical pain models and
assessment methods.

In addition to research on the biological mechanisms of nocicep-
tive transmission, numerous clinical studies have described strong
psychosocial/disability components to orofacial pain. Indeed, some
diagnostic classification schemes differentiate the dimension of tis-
sue contributions from psychosocial/disability factors [55] contrib-
uting to orofacial pain disorders. These studies demonstrate that
the orofacial pain patient is confronted with a complex, multidi-
mensional disorder that is best managed with appropriate treat-
ment for all underlying factors [2,46,56,61,85,97,154].

3. Studies on trigeminal inflammatory disorders

Many translational studies have evaluated acute inflammatory
injury to the trigeminal system. The dental impaction pain model
has been developed as a standard clinical method for evaluating
many analgesic drugs [43,45,115]. Other investigators have used
this model of acute inflammatory pain to evaluate preemptive
anesthesia [66,68], activation of endogenous opioid analgesic sys-
tems [70,78,104,105], local release of inflammatory mediators as
collected by implanted microdialysis probes [50,67,77,162], other
physiologic mechanisms [76], or the association of genetic poly-
morphisms with postoperative pain [95,96,98]. This clinical model
has several notable advantages, including participation of rela-
tively healthy subjects not taking concurrent drugs, standardized
surgical procedures leading to reduced variance, and relatively
large numbers of potential participants. Collectively, these studies
on patients undergoing surgical dental extractions have contrib-
uted greatly to evaluation of analgesics, anesthetics, and anxiolyt-
ics, as well as basic biological research on human subjects.

Other studies have focused on chronic inflammation of the oral
and craniofacial region. Clinical studies on irreversible pulpitis in
teeth (‘‘toothache’’) have demonstrated that this condition of bacte-
rial-induced inflammation/necrosis is associated with significant
changes in expression of ion channels [8,16,83,110,178,182], recep-
tors [106], and neuropeptides [32,33]. Moreover, inflammation of a
single tooth in patients appears sufficient to trigger central sensiti-
zation [59,94,127,151]. Animal studies on inflammation in the
trigeminal region have demonstrated target-site-dependent differ-
ences in sensitization/activation [62,79,175] as well as sex-depen-
dent differences in neuronal activities [20,126,168].

Fig. 1. Comparison of pain intensity among spinal and orofacial pain disorders
using the McGill Total Rank Pain Index (PRI[T]). The PRI(T) is an ordinal scale
consisting of the sum of the ranks of words in each of the 20 sub-categories on the
McGill Pain Questionnaire and ranges from 0 to 78. Data taken from:
[14,35,71,73,116,117,150,164,176,183,184].
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Fig. 2. Unique target tissues innervated by the trigeminal sensory system. Taken
from Bereiter et al. [23], with permission.
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Future research directions on trigeminal inflammatory disor-
ders may include preclinical and translational clinical studies
focusing on mechanisms underlying the development and mainte-
nance of inflammatory hyperalgesia/allodynia. Importantly, the
clinical condition of pulpitis results in a very restricted pain locus
(often within a tissue volume of <200 uL), intense pain reports [73],
and dynamic neuronal and immunoplasticity. Thus, the pulpitis
pain model is important not only from the perspective of high
prevalence [108] and health care disparity [174], but also serves
as a useful model for translational research [27].

4. Studies on trigeminal neuropathic disorders

The orofacial region has unique neuropathic pain disorders not
seen in the spinal system, including trigeminal neuralgia and glos-
sopharyngeal neuralgia [15]. Numerous clinical reports document
these and other orofacial neuropathic or neuritic/neuralgic pain
conditions and their responsiveness to surgical or pharmacological
treatments [15,38,118,124,129,168,184]. Several etiologic factors
appear to contribute to the development of neuropathic pain disor-
ders. Proposed mechanisms include injury/compression to the tri-
geminal nerve, inflammatory insult (possibly including glial
contributions), or infection with herpes virus [3,15,17,40,124,
125,177]. However, not all injuries to the trigeminal nerve lead
to neuropathic pain disorders; indeed, the incidence of neuropathic
pain after injury to orofacial structures is relatively low after dental
treatment [34,109,137], facial trauma [17], orthognathic surgery
[39], tooth extraction [26,36,143,173], or placement of dental im-
plants [72]. This apparent resistance of the trigeminal system to
development of neuropathic conditions is an interesting clinical
observation that should prompt preclinical research comparing tri-
geminal to spinal afferent systems for susceptibility to neuropathic
pain disorders. It is interesting that the trigeminal system appears
programmed for periodic loss of innervated structures during post-
natal development, with the shedding of 20 deciduous teeth per
person, with minimal development of neuropathic pain conditions.

Several risk factors for trigeminal neuralgia have been found,
including multiple sclerosis [44,140] and hypertension [93]. Addi-
tional studies have reported changes in the expression of ion chan-
nels (eg, NaV1.3, 1.7, 1.8, TRPA1) in surgical biopsies collected from
patients suffering from neuropathic orofacial pain [119,153]. Ani-
mal models of trigeminal neuropathic pain have been developed
and include chronic constriction injury of the infraorbital nerve
as well as transaction of the inferior alveolar nerve [3,177]. Inter-
estingly, both preclinical and clinical studies have implicated con-
striction of peripheral nerves as an etiologic mechanism for
inducing neuropathic pain via alteration in primary afferent func-
tions [81], although certain cortical changes have been reported
as well [28]. This has led to the development of clinical surgical
decompression procedures to treat patients with trigeminal neu-

ralgia [166,167]. Several preclinical studies have implicated ion
channels and endothelin receptors as well as glial mechanisms in
contributing to the development of these models of neuropathic
pain conditions [11,40,81,125].

5. Studies on chronic trigeminal myofascial and joint pain

The diagnosis and management of many chronic orofacial pain
conditions has been greatly hampered by confusion in determining
etiologies from the temporomandibular joint versus myofascial
sources. This has led to clinical studies difficult to interpret and
diagnostic classifications that did not have a strong biological basis
due to the lack of differentiation between joint and muscle contri-
butions to the patient’s pain condition. Clinical studies on myofas-
cial pain or temporomandibular dysfunction (TMD) were
considerably improved by the development of the Research Diag-
nostic Criteria [55,56], which highlighted the need for developing
standardized diagnostic methods and definitions. Considerable
evidence has been published demonstrating that patient sex/gen-
der and exposure to sex steroids serve as risk factors for developing
chronic orofacial pain conditions [61,65,100–103]. However, this is
not observed in all studies, and other risk factors such as chronic
widespread body pain, a prior history of physical abuse, or health
anxiety have also been reported to be associated with the develop-
ment of chronic orofacial pain disorders [1,55,61,92,100,107]. The
reasons why some but not all studies detect sex/gender as a signif-
icant risk factor for orofacial pain disorders is not clear, but may be
due to differences in patient populations, case definitions, or
experimental approaches. Related preclinical studies have demon-
strated that trigeminal neurons express estrogen receptors and un-
dergo dramatic changes in gene expression [9,21,49] or firing rates
[62] following exposure to estradiol.

Other clinical studies have focused on synovial fluid levels of
inflammatory mediators to test for other possible biological mech-
anisms [31,160] or have evaluated the role of peripheral glutamate
receptors in triggering myofascial pain [7,12]. A very interesting
approach is the application of genetics to patients with TMD. A
haplotype of the catechol-O-methyltransferase gene in patients is
associated with reduced responsiveness to experimental pain and
to reduced risk for TMD [47]. Moreover, a mechanistic hypothesis
for the protective effect of this haplotype has been advanced
[121], and TMD patients with this catechol-O-methyltransferase
haplotype respond with increased analgesia from drugs such as
propranolol [169].

6. Studies on other orofacial pain conditions

Many other orofacial pain disorders also have been evaluated.
The trigeminal autonomic cephalgias include cluster headache,

Fig. 3. Rates of articles published on orofacial pain. Data were acquired from a PubMed search (August 2010) using the search criteria of: (orofacial or trigeminal or
temporomandibular or dental or tooth) and (pain or headache or hyperalgesia or allodynia or nociceptor or nociceptive).
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paroxysmal hemicrania, and unilateral neuralgiform headaches
[41]. This collection of pain disorders is characterized by unilateral
head pain in association with autonomic features such as tearing

and conjunctival involvement, and considerable research has shed
light on pain referral patterns and issues related to proper diagno-
sis and treatment [18,51,58,64,86]. Most cases of trigeminal auto-

Table 1
Comparison of the trigeminal and spinal afferent systems after injury.

Marker Injury model Comparison Authors

Galanin Axotomy TG � DRG for upregulation Arvidsson et al. [13]; Zhang et al.
[185]

NPY Axotomy TG � DRG for upregulation Arvidsson et al. [13]; Zhang et al.
[185]

Sympathetic fiber sprouting into
ganglion and basket formation

Axotomy or CCI TG: No DRG: Yes Bongenhielm et al. [29]; Benoliel
et al. [19]

Sympathetic fiber sprouting into
ganglion

NGF infusion icv X 14d DRG > TG Nauta et al. [122]

SNS/PN3 = NaV1.8 Axotomy TG: Downregulation followed by
normalization DRG: Persistent
downregulation

Bongenhielm et al. [30]

Ankyrin(G) Axotomy TG: Persistent downregulation Bongenhielm et al. [30]
Ectopic firing of afferents Axotomy TG < DRG Tal and Devor[165]
Augmented excitability Axotomy TG � DRG Tal and Devor [165]; Zhang et al.

[186]; Cherkas et al. [37]
Frequency and rhythmicity of

spontaneous discharges
Tight ligation of infraorbital vs sciatic
nerves

DRG had significantly greater
spontaneous discharge rate than TG
neurons for both myelinated and
unmyelinated fibers. DRG afferents
had rhythmic discharge rates (not
seen with TG)

Tal and Devor [165]

Satellite glial cells Axotomy TG � DRG for upregulation of GFPA,
proliferation

Woodham et al. [181]; Stephenson
et al. [158]; Cherkas et al. [37]

NOS Axotomy TG � DRG for upregulation Hokfelt et al. [84]
P2X3 & ATF-3 expression Partial axotomy TG � DRG Tsuzuki et al. [171]
GM3 ganglioside. Knockout GM2/GD2 and the GD3

synthase gene
Facial wounding > Rest of the body
With peripheral nerve degeneration

Inoue et al. [87]

Peripheral chromatolysis LiCl TG � DRG Levine et al. (2004)
Sensory neuropathy with neuronal

degeneration
Sjogren’s Syndrome TG � DRG Malinow et al. [113]

Infectivity of contralateral ganglia Herpes simplex virus-1 (HSV)
infection

70% of TG contralateral to side of HSV
injection produced infections after
inoculation, whereas only 10% of
contralateral DRG produced
infections.

Thackray et al. [170]

HSV polypeptide ICP4 (VP175)
expression in ganglia

Herpes simplex virus-1 (HSV)
infection

TG � DRG Pepose et al. [136]

Viral replication and degradation of
host cells, mRNA

Herpes simplex virus-1 (HSV)
infection

TG � DRG with wild-type HSV more
virulent in both ganglia than HSV
mutants lacking virion host shutoff
(vhs) protein

Smith et al. [156]

Infectivity of ganglia Simian varicella virus (SVV) TG � DRG White et al. [179]
Substance P in ganglia Streptozotocin-diabetes TG had 26% reduction (P < 0.01), but

DRG = 11% non-significant reduction
Robinson et al. [144]

Substance P in ganglia mf rat (mutilated foot; an autosomal
recessive sensory neuropathy with
reduced pain responsiveness

DRG < TG Scaravilli [148]

Caspase-3 mediated neuronal
apoptosis

Knockout of Rb (retinoblastoma
tumor suppressor protein)

TG � DRG for protection from
apoptosis in double knockout of Rb
and caspase-3 compared to single Rb
knockout

Simpson et al. [152]

Number of neurons in ganglia TRKa knockout TG � DRG for extensive neuronal loss Smeyne et al. [155]
Reactivation of virus HSV mutant with gamma 34.5 gene

deletion
TG > resistant to reactivation than
DRG

Spivack et al. [157]

Wide-spread numbness and pain 4–
12 d after antibiotic treatment

Acute sensory neuronopathy
syndrome in humans

TG � DRG Sterman et al. [159]

Pain Trigeminal neuralgia in humans TG: Yes (max/mand
divisions > ophthalmic) DRG: No
equivalent

Jannetta [88]; Sweet [161]; Wilkins
[180]; Goya et al. [69]; Hamlyn
[74,75]; Tacconi and Miles [163]

Spontaneous behavior Formalin OVX females exhibited significantly
greater increase in formalin
hyperalgesia after orofacial injection
(upper lip) compared to hind paw
injection. Result is consistent with
hypothesis of a difference in sex
steroid regulation of nociception
between TG and DRG systems

Pajot et al. [128]

SNS, sensory neuron specific; PN3, peripheral nerve sodium channel type 3; NOS, nitric oxide synthase; P2X3, purinoceptor 3; ICP4, infected cell protein 4; TG, trigeminal
ganglia; DRG, dorsal root ganglia; NPY, neuropeptide Y; CCI, chronic constriction injury; NGF, nerve growth factor; NOA, ATF-3, activating transcription factor 3; OVX,
ovariectomized.
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nomic cephalgia reflect primary headaches, although rare cases
may be associated with pituitary tumors [41]. Pain is a major as-
pect of oral cancer [57] and often represents the initial symptom
that prompts patients to seek health providers. Pain due to oral
cancer may be due to soluble factors released from tumor cells, a
localized inflammatory response to the tumor, or even nerve
entrapment. Several recent studies have implicated the endothelin
system and proteases (eg, PAR-2 receptor activation) in mediating
mechanical allodynia experimental models of oral cancer pain
[52,141]. Burning mouth syndrome is a rare disorder, commonly
characterized by spontaneous burning pain and mechanical allo-
dynia. Although idiopathic, it has many features of neuropathic
pain and has been reported to be associated with altered periphe-
ral expression of voltage-gated sodium channels [16].

7. Discussion

Orofacial pain disorders comprise a major and expensive com-
ponent of health care and collectively have a high prevalence rate,
a large range in pain intensity with a commensurate, often devas-
tating impact on quality of life [149]. Although there are many
common aspects of pain transduction and processing between
the trigeminal and spinal systems, there are numerous examples
of unique features in the peripheral and central components of
the trigeminal pain system. Accordingly, ongoing basic and clinical
research focused on acute and chronic orofacial pain conditions is
required to understand the unique features of this pain system and
to develop and evaluate better ways to treat patients with orofacial
pain.

A major barrier for improved patient care and translational re-
search is the lack of validated diagnostic criteria. Although efforts
have been made to classify TMD patients with the Research Diag-
nostic Criteria for TMD, headache patients with the International
Headache Society criteria, and orofacial pain with the American
Academy of Orofacial Pain standards, clinical research indicates
that each of these 3 methods is incomplete for comprehensive
diagnosis of orofacial pain patients [18]. Thus, further research is
critically required to establish a comprehensive, sensitive, and spe-
cific diagnostic classification scheme for all orofacial pain patients.
This would provide a critical contribution to practitioners and fos-
ter the development of a powerful dataset for clinical research. In
addition, recent studies have incorporated quality-of-life indices,
which provide important additional information on clinical out-
comes [123].

Taken together, orofacial pain conditions represent a highly pre-
valent spectrum of pain disorders with pain intensities similar to
those observed with many chronic spinal pain conditions. How-
ever, the unique anatomical, biochemical, and associated psycho-
social components provide compelling evidence for specific
research focused on orofacial pain disorders.
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